If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+9a-90=0
a = 1; b = 9; c = -90;
Δ = b2-4ac
Δ = 92-4·1·(-90)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-21}{2*1}=\frac{-30}{2} =-15 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+21}{2*1}=\frac{12}{2} =6 $
| 3x+5=7(x+2) | | -8+x=25 | | 650+0.08s=410 | | 3m/2+4/2=9/2 | | 5v=7/10 | | 5x-9x+2=0 | | 32+4x=77 | | (4/a^2-13a-48)-(2/a^2-18a+32)=(1/a^2+a-6) | | 16x^2+24x-272=0 | | 9c/7-6c=15 | | -4(2y-5)-y=-2(y-3) | | -16+4x=-32 | | 44+7x=77 | | 3x+2x=50-x | | 5x-2(x+3)+4=2x+3 | | 4x-2(x+3)+4=2x-2 | | 5x-3/5=5 | | 4x-2(x+3)=2x-6-5 | | 4x-2(x+3)=2x-6+5 | | 3/2x-4=1 | | 5x+2=81 | | 4x-2(x+3)=2x-6 | | 5=((106-x)/7)-5 | | 5=106-x/7 | | 2t+5=3t-6 | | x/3+50=90 | | X^2+y^2=90000 | | X+3/3=y+2/2= | | 4x-6=10÷3 | | 5m^+9m-80=0 | | 6y-8=8y-8 | | (2/x)-(2/5)=(1/x)+(11/10) |